Electromagnetic counterparts of neutron star mergers and the origin of heavy elements

Kenta Hotokezaka (Hebrew U.)

Collaborators:

- K. Kiuchi, M. Shibata (YITP), K. Kyutoku, S. Wanajo (RIKEN)
- Y. Sekiguchi (Toho), M. Tanaka (NAOJ)
- T. Piran, M. Paul (Hebrew U.)

Advanced gravitational-wave detector network

Compact binary Astrophysics

Wariation in Neutron Star Mergers

- **EM** transients from Neutron Star mergers
 - ✓ Mass ejection from a merger
 - ✓ What we can learn from macronova (kilonova) candidates

^{® 244}Pu and the origin of r-process elements

Evolutionary path of NS-NS merger

Case 2: Hypermassive Neutron Star formation

Case 3: Prompt BH formation

Neutron Star Mass Observations

Systematic study: Dependence of NS-NS merger on NS EOS

- ♦ Binary Mass
- ✓ Total Mass: 2.6~2.9 Msun
- ✓ Mass ratio : $0.8 \sim 1.0$

Numerical Relativity Simulation solving Einstein equation with fluid

Hotokezaka et al. (2013)

First remnant of NS-NS mergers

A massive neutron star is likely to be formed after a merger for a NS-NS merger with typical total mass.

EOBNR hybrid waveforms

KH et al in prep

A numerical waveform Is hybridized with an EOB waveform in the region from the first a few to 8 GW cycles.

We will probably be able to distinguish a neutron star with a radius of 13km and 14km for an event with SNR~17 (200Mpc).

Compact binary Astrophysics

***** Variation in Neutron Star Mergers

EM transients from Neutron Star mergers

- ✓ Mass ejection from a merger
- ✓ What we can learn from macronova (kilonova) candidates

[®] 244Pu and the origin of r-process elements

Neutron Star Merger

1. Gravitational waves LIGO's main target

- 2. Relativistic jet => short GRB
- 3. Mass ejection.
 - (a) Isotropic electromagnetic signal EM counterpart of GWs
 - (b) r-process nucleosynthesis

 The origin of heavy elements?

Mass ejection at merger

Model: 1.2Msun – 1.5Msun, APR4

Hotokezaka et al 2013

Mass ejection at merger

Model: 1.2Msun - 1.5Msun, APR4

Mass ejection: Mej ~ 0.01 Msun, v ~ 0.2 c

Mass ejection on the Meridional plane (x-z plane)

Model: 1.2Msun – 1.5Msun, APR4

300 km x 150 km

2400 km x 1200 km

Mass ejection on the Meridional plane (x-z plane)

Model: 1.2Msun – 1.5Msun, APR4

NS-NS Ejecta is spheroidal.

R-process and radioactive heating

Bauswein et al 2013 see also Roberts et al 2011, Korobkin et al 2012, Wanajo 2014

Metzger et al 2010

- ✓ Almost all material is synthesized in heavy r-process elements.
 - 1) Sum of many radioactive nuclides => power law heating rate.
 - 2) A large absorption coefficient of atoms with high Z.

Macronova/Kilonova light curves

Tanaka & KH 2013 see also Barnes & Kasen 2013

Red-IR bright transient with timescales of days ~ a few weeks

Discovery of Macronova (Kilonova)

※ A novel discovery of a possible macronova associated with the short GRB 130603B (Tanvir et al. 2013; Berger et al. 2013)

The observed data are consistent with the theoretical expectation. The estimated ejecta r-mass is $0.01 \sim 0.1$ Msun. (Hotokezaka et al 2013)

Three Macronova/Kilonova candidates?

GRB 130603B (Tanvir et al 2013)

GRB 060614 (Yang et al 2015)

GRB 080503 (Perley et al 2009

Redshift is unknown

10⁴¹erg/s at 7days

10⁴¹erg/s at 13days

Macronova and Supernova

	Macronova (Neutron star merger)	Supernova (Core collpase)
Ejecta mass	$0.001 - 0.1 M_{sun}$	$1-20M_{sun}$
Radioactive mass	$\begin{array}{c} 0.001-0.1M_{sun} \\ \text{(r-process)} \end{array}$	$0.05 - 0.1 M_{sun}$ (Ni56, Co56)
Electron fraction	0.01 - 0.4	0.5
Velocity	0.2c - 0.3c	0.01c - 0.1c
Peak luminosity	$10^{40} - 10^{41} erg / s$	$10^{42} - 10^{43} erg/s$
Peak time scale	~ week	~ month
Peak wavelength	Near Infrared	Optical
Spectral feature	Smooth, perhaps wide-absorption lines	Absorption & emission lines

Mass ejection and the galactic rate

KH, Piran & Paul 2015

Comparison: the galactic r-element

KH, Piran & Paul 2015

Compact binary Astrophysics

***** Variation in Neutron Star Mergers

- **EM** transients from Neutron Star mergers
 - ✓ Mass ejection from a merger
 - ✓ What we can learn from macronova (kilonova) candidates

^{® 244}Pu and the origin of r-process elements

The origin of heavy r-process elements

The origin is still a mystery.

R abundances (Z>50) of halo metal poor stars

- ⇒ Indistigushalble from the solar pattern
- ⇒ A single kind of phenomena may produce heavy elements.

Supernova vs NS merger

Supernova: High rate/Low yield NS merger: Low rate/High yield

Sneden et al 2008

Short-lived ²⁴⁴Pu & the origin

- [⊛] ²⁴⁴Pu:
 - 1) Produced only through the r-process,
 - 2) the half-life is 81Myr,
- ✓ short enough compared to the Earth's age 4.6Gyr,
- ✓ long enough to accrete on Earth from ISM.
- 3) the abundances at the present and Early Solar System are measured.

Estimated ²⁴⁴Pu density

- 1. Early Solar data Turner et al 2007 (ancient rock) Lodders et al 2007 (meteorite)
- 2. Deep-sea data Wallner et al 2015 sea crust & sediment for the last 25 Myr.

Supernova vs Neutron Star merger

Normal core-collapse SNe => High rate/low yield

Neutron Star Mergers
=> Low rate/high yield

$$\tau_{\text{mix}} \approx 300 \text{ Myr } (R/10 \text{ Myr})^{-2/5} (\alpha/0.1)^{-3/5}$$

$$(v_t/7 \text{ km/s})^{-3/5} (H/0.2 \text{ kpc})^{-3/5}.$$

$$\langle n_i \rangle_m \approx n_{\mathrm{eq},i} \exp\left(-\frac{\tau_{\mathrm{mix}}}{2\tau_i}\right) \quad \mathrm{where} \ n_{\mathrm{eq},i} \, pprox \, N_i \mathcal{R} \tau_i$$

Turbulent mixing

Chemical evolution of ²⁴⁴Pu around the solar circle

We perform a Monte-Carlo simulation of Pu abundance taking

- (1) Turbulent diffusion process of the ISM,
- (2) The event rate evolution follows:
 - (a) short GRBs and (b) star formation history,
- (3) ²⁴⁴Pu decays with the half-life of 81Myr,

into account.

History of Abundance of ²⁴⁴Pu

KH, Piran & Paul 2015

Comparison: Astronomical observations

KH, Piran & Paul 2015

Summary & Conclusion

- A neutron star merger ejects a significant amount of mass.
- * Macronova (Kilonova) candidates are discovered and the estimated ejecta mass is $\sim 0.01 M_{sun} \sim 0.1 M_{sun}$
- We test high rate/low yield and low rate/high yield scenarios (Sne vs NS mergers) using the measured ²⁴⁴Pu data
- * The estimated rate and yield are R< 100 Myr⁻¹ & M_{ej} >0.001 M_{sun} .
- These are consistent with other astronomical observations of NS mergers.